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This report deals with s o m  general properties of the dyadic Green8s 

function 5 f o r  osci l la tory electromagnetic waves in a homoogeneous anisotropic 

medium, and with aspects of the theory of antennas 181 such a medium 

results, byproducts of a calculation of the impedance of a cylindrical  dFpole 

antenna i n  the magnetosphere, are largely iildependmt of the main argument 

toward that calculation and are  believed %o have s!-gaificance for  more geneml 

problems. 

The 

We first give the Fourier representation of Ci(s), a triple in tegra l  

sepresent'ing ti supeqmsltion of plz .3  uavas of va3.ious prspagstim vectors k, 

With t h i s  representation we shov t h a t 2  is an even function of its spatial 

argument2 and t ha t  when t h s  representation is m i t t e n  in terns of spherical  

coordinates in k-space9 the r ad ia l  integral, over R posit ive R - a x i s ,  can be 

extended to the  f u l l  R-exis, a form nathemneticaliy conventen% in applicatioas. 

Froin the Fourier representation we also argue tha t  a closed-fom expvession for  

G is generally unobtainable: Fa- a c h s e d  fom WO-J~C! w.ount t o  8 closed-fora 

prescription 03 the  surfaces of constmt phase, descrtbbg the f i e l d  s t  great 

distances from a point soux'ce in the sn'isotroplc median; %he conefanl-phase 

surfaces are anvslopes of families of  plwe mve-fronts of the Fourier super- 

positton, and the corresponding eevelope psoblm, as fomd i n  the 19th ce%?xry 

litemtux, is genesaliy insol-illble in closed fom. 

* 

M 

#e then cimeides t i h ~  complm pover m d  t;rze va-+'-ational p e s c r i p t i a o s  fo- 

calculat'hg %he inpat h p e d a ? ~ c s  of DosfecLly conducting eratennes f3d a* a t k ; b  

slit. 

efficacy to the exi,mG t h a t  G, as a dyad, is aor.-ajr~.met,~io, as is the case Tor 

Fo- t h e  m,iaat~-oprlc me2 b~m the l R t + t e r  prescr?-prEon Loses 3 & I . S  '. va-ie?i9nai 

IH 
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pwal le l ,  the a n t i s m e t r i c  psr t  ~ 2 5  has no effect  m d  the variational form 

l s  agah p o w & - E d  for mitema-cwrert  and hpdance 9stimtes. 

In calculating the impedance of thir cy l indr ica l  antennas, a cornpaonly 

suade assumption i s  'that. the sad ia t ing  cuments can be taken as concentrated on 

the cylinde-r's axis rather than distributed uniformly around its circumference, 

Yb. the Fourier representation fos C we art? able t o  prescribe exact cork-ections 

f w  t h i s  !*axial current8' asmqtfori, a d  to find that f t  cyeates no a,m: k. 

the f i rs t  two, domiumt, tenus of the uslzljll q a n s i a r :  of %he i xpdance  i n  

functions of the c y l i n d w v s  radius, 

a% 
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variat!.oml character and ccnsequent, ei'€icscy b establ ishing P ' best autenna 

eurren'lt demmts are  lnlatually parallel, This assumption is proper f o r  a zhin 

dipole.  The further "axial  cursent' assumption, that radiating currents in 

the dipole can be considered a5 concentzated on the dipole's axis, i s  standem3 

(and was made in o w  numericel calculation). Ths fact. that we m e  forced, for 

closed form of the ususl  $sotsopic calculation, now leads easily to sxect. 

problem of ant-ems impedmce in a spsce-probing antenna, are  re?-ega+.ed to 

appendices, 



of spec i 1’ t’i tally d e s  fp.atred bodies 

Solving the first of the foregoing for 8 aad subst i txt ivg  5he reszlit~ into t he  

second, we obtain 



whence from (6b) 

Thus we have, from (21, 



Thus we have the dyadic G r e a t s  fwctkm Fourier-represated in %be fom 

i 



result:  

Now the entire integrand is even im R, so tha t  the integral over +he positive 

x-ed. R axis can be extended to the entire real R axis: 

by residues, i n  certair applications t o  be discussed.. 

We nou inquire whether 5 can be obtained in  closed form, i .e, whether (13) 
.r or (15) cen be evaluated for the general case 

(I  the Identitjj  Ilratrix) and thus are essentially scalars a s  Zn the free-space 

case, P, 

form of a q u o t i e n t  of second degree polynomials in kL 9kQ ,k, 

polynomials in If' e F ~ t h e ~ ,  it? is s s a  t ha t  t y ~ f c s l  t ~ m  e k ; , I ~ ~ k ~ ~  klr: , 

Whea both 5 = %,Ii. ko 2 
/3 

arid Q have c o m n  factors,  cancellation of which leaves 53: .) ,!Q in %he 

QP f i r a t ,  degr-ee 

a 



Hence we have 

where Ois is  a d i f fe ren t ia l  operator of even degree operating on g(3-sf) as 

function of 2. The evaluation of the single ( sca la r )  integral  g(s-&*) thus 

suf f ices  f o r  obtaining s i n  closed form. 

as a fourth degree polynomial in 

question t h a t  t h e  R-integral is perfomable by residues a t  the outse‘e. 

Here w e  note that if  Q(9 wepe l e f t  

or second degree i n  p,  there is no 

(Ore 

sets ~ r c ( c , )  > O in the  scalar case t o  determine location of the  zeros of q($); 

analogous methods work in the general case.) 

degree i n  R than Qr&J so that %he ixnediate residue-evaluatAon of the R-integizal 

was n ~ t  possible there ,  

In (lr), P P S i  was of higher 

h r t h e s  discussion of the evaluation of E (or g) is relegated t o  Appendh I 

as not germane t o  the main line of argument-. It is shorn heusis%ically there 

t h a t 3  amnot hsve a closed-form evtllustim i n  this general case<, 

We now consider Gi9(x-x8) = GgJ(zf-& =. G,: as a matrix, or dyad. We mite 
e- 

where S: = Si 28 a symmetric 3x3 matrix A, * = -AJL is an antisymmetric oneo 

Wrii;ing sT as t h e  transpose of & we have G, -= ($1 1“ S, .I-- A, ,, == (gT)l - (& T ) #  

OF AT = --, ET 2 From ( 8 )  we have LT = 5 so that 



kT = rrc 8 2  .e (J 
and sT = E i . e .  , when and only when both e and p a re  symmetric tensors 

do w e  have a symmetric Green's Tunction Gig - G,, sig * 

In  summasy, we conclude that t h e  dyadic Green s funckiora Gzg(x) f o r  

electromagnetic waves in a homogeneous, anisotropic medium is an even function 

of its argument 5. 

if both d i e l e c t r i c  and permeability tensor are symmetric. 

G i s  representable as the a m  of a sjplmetric ard  &n antisymmetric dyad, each 

beisg representable though  ci t r i p l e  Fourier representation, iceo as a super- 

posit.ion of plane weves of varyigg propagation coxkants  IC, When the represea- 

taticjas are given i n  t e r n  of spherical R , 0 , 6  coordinates in k-space, rhe 

radial in tegra l  can be taken as one-half the integral over the f u l l  R axis. 

In the  general case, the argument of Appendix I indicates  t h a t 2  is unavailable 

i n  closed form, so t h a t  the Fourier or  other representation is necessary. 

4 

As a matrix or dyad, G is symmetric (Gij = Gli) i f  and only 
N 

In Vie general caae 

PI 

P-4 

3 0  RE'ilIEw OF SOME ANTENNA THEORY 

We apply t h e  prope-rties of the Green's fmction as szmmarized in the 

fowgoing paragraph +a the problem of coxiput.lr?g the ioput impedance Z of a 

perfec t ly  conducting antenna fed st a gap 

a hoaogeneous anisotropic inedium is not discussed i n  the standard woTks, and 

f o r  t h i s  reason we modify some standard antenna theory t o  take account of the 

generalization a 

The fheory $or a t e m a s  inmersed iC 

We take as the  i d e a l  antenna under consideration a smooth closed surface 

except in a elit, or mtmma gap, C which is pepfectly condccting everywhere 

of F n f t n i t e s b a l  wid':h A, ' c u t .  along 8 smooth cu,"ve connecting %fie su-fane 

p o i - t s  3- ; ~ n d  b, Let - I  aessllre dj.st,a--ce frm -3 alcng %be ~155, ami msme a 

SLL,V ' .~~CQ c: i-renf -de.r,sit,u {(u) i lowhg ~wmii. to the d 2 - t  8s t he  tiratet-xa i ~ p u t  
"- 
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fb cnrrent distsibution. 

As P, m a u l t  of this bqxt9 the sucfece current, dwsi%y j(d will be found el; 

t he  general point 3 of C, with L(d defined a s z ( u )  when 5 l i e s  in the s1i.L at 

distance y f r o m q ,  

R e  antenna i n p t  C U X % R ~  is  then defined as 1 = h;(u)du. 

H 

The surface current density k(s> radiates, 80 that the electric  f i e l d  E(x+) 
c 

a t  a general point %is given through the G?eenys function: 

in which the conversion fmn the volume in tegra l  (21 to  the surface ki-egral 

(17) is assumed properly nade. 

eccount of %ne fact  that the tangential componmt Et(s) of the electric  field 

must vanish a t  each surface p o i n t 2  of a perfect, conductor, we have 

Letting & be a t  the  surface point 5 and k k b g  

c l e  

(20) 
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which by t - l r t ue  of (12) ,, is 

Writing the m a t r i x  5 as tne sum of e symmetric matrix g a n d  an antisymmetric 

rmtriX& we have 

whe:pe 

determined WritiEg 
, r  
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since "she coefficient of k( s) 01 k ( a '  ) Ymishes, by (18) 

where & vanishes by essiunption, 

except in the slit, 
..b#.- N P- 

We %herefore have botiz 2 '  = Z at = C a i d  

dZ '/br : 0 a t  0 -- 0, 
is a good approximation (as judged by the smaflness of 0, when the 'erroz 

current3 satisfies say fck,'@s -" 11, the estiillate 2'  is even closer to Z, by 

O ( # ) ,  as compwed witn Q(n) for the emor in the assumed cumesLL, 

Thus if %he guessed antsma current dist.ribution j " ( s i  
r Y . 5  

Thfs mews 

%ha% we may take a parametrized t r i a l  current distribution, regaz-ded as 

sceuaate for soae paartlcular 'best' set  of parmeter values, a d  choose as 

'bestv that set for which each paaaeta--da-i-sative of % ;  as coqu'ted in :23) 

Z than the 'bestq j y  is t o  j. 
H fl 

We are not esa'cir-ely sure that the 2 as coxcrputed above is Lq fact the 

antenna impedance in any practical case; details of the gap geometry and 

currents have been brushed over here, but relevant considesations are  discussed 

Fax-aday screen material mch t h a t  a l l  conductifig elemen*& .we parallel to s o m  
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seciprozity, ice, symetqy on the part of the GreenFs func-tim, appear to be 

ciosaly b t e r t w h e d  concepts, and one cons estures that a variational ~ ~ e s s i o n  

fcr a quantity of interest (impedance, scattering amplitude) is obtakable 

only when any cmtisymraetsy in the G ~ e e n ' ~  f'unc-tion has no effect in the 

quantity considered. 

4 -  AFTLICATIOW TO THE THIN CYLINDRICAL DIPOLE IMgED-UJCE CALCtnaTIOEJ 

We have reported elsewhere [I] nlunerical caleulaticins of the -Impedance of 

a t h in  center-fed hollow cylindrical dipole an-ternen of radius rp half-length L 

in the hemgaeous m-l.gnetospheiPe, 

scaler pemewbility of F B C U ~  md t o  be tiiiiso%sopic 'Cbougfi a m b a x l a l  n m -  

syxmtric dielectric t , e n s o ~ ~  Taking an R , & e  cylindrical eoordiazate systm 

with  z measuring distance along the dipole!s axis fro= its center, 3 the mi% 
vector parallel t,o the z-axis, we assumed 

The ambient medim w s s  ass-med to have the 

(a )  . that  the current-density oc the d i p l e " s  surface is independent of 

azfmutb, and 

that ahe czrrwt elements are everywhere paaallel to the z-axis- (b) 

Assmpt-Lon (b) is the sme as a e s d g  %he clipole made of Faraday-acpeesa material 

ulth slmera%s ese~phere parallel to the exis; a z h i t h a l  curseat componerrt.s, 

clsa+*ly poselbls with thick d i p i e s  

suppsvessed, or at least aegligible as far as ths  impedance is concerned, 

e. gynrt,o-q- nedlm, are thus assumed 

Thus the *'complex p0we9~ cslculatd.on %&es the fonn 



where j (0) gives ths owrent  density across the central  ?irc&erentisl mtema 

gap, and where She constant M cantaim nwerica'i -and dimensional c o ~ s t & n t s  

unessentfsl t o  the following discussion, One obtains the variat ional  form by 

simply removing the asterisks, For the isotpopic 'VSCUUIP~ case we m y  use 

the known closed form for 

Integpd,, ta be eva lua td  for estimating z f x m  an ~ssmed j ( 2 )  c, 

here, giving 8 fourfold integral, or double surface 

Fo; our 

m a t o r y  medium w e  are forced to a representation f o r  2 sad  fbd it converient 

Lo use the Fourier representation (13) f o r  discussion. 

tion we used (15), 1 

(In %he actual calcala- 

This  gives { 2 5 )  in the fom of a seven-fold ivtesgral fPom 

which we select out mly  %fie double integral  over the azimuth angles 6,d' fo? 

further discussion, In the e x p ( i ~ ~ ( ~ - ~ ' ' ) )  of (13) we choose +he zd &xis 

ident i ca l  with the  dipole's, OF the z-axis2 so ,kha'r one w r i t e s  convenaimtly 

in <:2fi) only in the exponential of ths Gx-eenfs furaction sep-esertatiop, a d ,  

with fi = F on the dipole's surface in ths form 

Me 

z 



From (27) we now -nave 

sffect,i.ng the  s p p l i c s b i l i Q  c f  ( 2 9 )  





Wa investigate the prospects of obtaining Fg closed form a dyadic Green's 

fsloction for the rsducd Maxwell ' 8 equations for a homogeneous aniso-i;.ropic 

medius, 

die lec t r ic  such as that pertaining 50 The mgns-t;oaphese, OT a uniaxial tenso:- 

permeability spprogriaLe to a magrae+%zed ferrite, 

We are specific6ll.y in%eses%ed i z ~  a medium having a uniaxial tensor 

W% b - ~ e  obtained, io eqe !I681 n f  *be text,, a scalar i~.,bqpil g f , x ) ?  %o 

xhhh apj1mp~ia5e differential ope7aPors lnsy be appliad to o b k b  ths dyadfc 

Grew's  f E * ~ t i G l l f  xSS~E?.hdly ,  

(hi) 



More quantitatively, one regards the g of (AI) as the analogue of 

g -= exp(ikr)/r, T = (I? c- 4 8)*, with 

fat least those not cancelled by the P i ,  of (13), (lr)] in the isotropic 

space$ case. 

and w e  look for a generalization of the form Ai (x)& ‘2) + &(x)ei‘d(E1 where 

the amplitudes A and the phases 0 are giveaa explicitly in terns of x,y,z asid 

the c m s t a n t s  of the medium, 

m i n  va?iat%on of g is according to the phases c4(x,y,z) (I Given the explicit  g, 

we should themfozw be able to dete-e -the constml-ptsse surfaces dlx,y,z) = $J; 

this  takes on pkysical significance, and permits es3mptotic ma*hermt,ical mettroas, 

f o r  l a rge  1x1 , i o e  for large $ since h l x l  for iarge 1x1 and ftxea direc%ioI: x, 

giving a l l  four roots of Q(3) - C 

freE 

Hare the scalar Green*s function is of the form b ( x , y , ~ ) e ~ ~ ~ ~ ~ Y ~ ~ ~ ,  

- A #  N 

For large z9 the amplitudez vary slowly m d  rhe 

P 

N w r4 N 

The pyoblem of finding the coastant-phase suaface OF sufifaces is *hat’ of 

finding the envelope of the plane-wave phases 

that q ( k )  b: 0. 

by stationary-phase methods after performing one integrsxion ( s ~ y  the R-integra- 

t ion of (168)) by residues. Altesretiuely, Q($ = 0 

pvopagation c o ~ s t a n t e  % 9  5 of the (two) kinds of plane waves leeviug t h e  poin t  

source with approximately common phases; a t  large distance 1x1 their phases a m  

given, with relative error decreasing with 1x1, by ke*x, & x so that the 

problem of firiding the corms~t l  phase surface i s  t o  find the envelope surface 

of the system & z kox, Qfk) :- 0, 

ing k = p,q,‘ among the four q u a t i o r s  Q l p , q , ~ >  - 0,  & = px c cy 
# P 

y/’qq - z/QTp winere t i e  subsc--ip+s bmo+e ha ~ a - i ‘ t i s l  6e~Pdat!.rss - 

:: & aubject to the condition 

This i s  basically identical with ths problem of evaluating (AI’)  
N 

%he squs’rion fo r  

w 

N & M  W t - 4  

Mathematicaily the pmblsm is me 0% a l h t n a t -  
J w @  AJ 

TZ, x/’G) - 

T M  s ehni-~: .  
. .  

T ~ Q E  i~ pcsaible  2gl.y v h a ~  & , X . Y , F  s a ? i s f ~  3 T ~ ? ~ R ~ ? ~ * v ,  V:-~TI? ~.‘e p’efe + ,  khq 

fom 4 . 9jx;y,zf. 

This erverc._u: pT&lem t s  cf t h e  :yye ‘-wQt,?d 2d I C ! & k  cecto?y i23Pk5 



algebraic curveso 

the most general casel but do find results pertaining t o  uniaxial geometries 

of the type encountered i n  the magnetospheric and ferrite media. 

cases, we may take the  z-axis in the principal direction, the x-axis in any 

orthogonal direction, and ignore t he  y-variation by vi r tue  of the ro ta t iona l  

symmetry of the  problem about t he  z-axis. For the magnetospheric case, q is  

set to zero i n  Q(p,q,r) and the  resul t ing Q(p,s) is biquadratic i n  both p and 

re The envelope problem is  now one of finding the ervelope of the lines 

& = px + rz, where p and r s a t i s f y  the biquadratic re la t ion  Q(p,r)  = 0. 

We do not find an expl ic i t  consideration of our 2roblem in 

In these 

This problem is treated i n  Salmanvs wHigher Plsne Curvesat (Third edit ion,  

1879) sections 90, 92, 298, and 300. According t o  our undemtanding, the 

equation of the envelope is given there in the equation 

Salmonis notation, S = ( 0 1 2 ) ~  is a homogeneous polynomial of second degree i n  

,lid ,#, and T = (a12)a(a23>a (a31)' is homogeneous and of th i rd  degree in  

-= 2@, where, frp 

these variables. 

factor.) Salmon gives S a d  T explicit13 in terms c?f the coeff ic ients  0.f Q- 

According t o  our algebra, the resul t ing envelope equation is homogcmeous and 

of dejpee 6 in t he  foregoing variables, and the coefficients of hXB3 kYo 

vanish only in exceptional circumstances. 

ha0 generally ta solve a sextic i n  %a with roots function of x!$  8, 

exp l i c i t  formula for any root  is t o  be obtained; furthermore, one would have to 

assign pwsical significance t o  all six roots, 

(The notation does not imply t h a t  S and T have a common 

Thus t o  find & i n  terms of x 9 z  one 

No 

If OUT understanding or" the envelope problem ai! t h e  iPo$ied algebraic: 

minjp.&ations has been? ccrr.rect, there appeue no b p e  of finding 

closed-fom Green's function by any process, 

eqiLici+. 

.. For one w0t;l.d then have exp)i-cci+ 

formulas  OF C G R s t W t - p h e s e  sUX'fSce8 which C e r t a h i 2 r  Eire aS_vu?Fto'c~-C to Whve-f T'Xi k 



envelopas of the Eosegaing type et s e a t  d i s t m c e a -  

would h s z e  developed explicit closed-hm expressions for the roots of 8~ sextic, 

in t e r n  of the coefficients, known to be Fmpossible in the g a e r a l  ca3e- 

Thus we are restricted to a repsesen-tatioc for the Green's fmctiw. 

does not mean, however, that an alternative %licit algebraic repsesentatioa 

mfi-ght not ba possible or useful, or that the fosegoiag intespre%&ion md 

algebra is not open to questton, C)T -'chat special case8 where the s&ic recivces 

%o lower degree should not be exmined f o r  phpical  i ~ t e r e s t . ,  

This be- the c m e ,  oris 

This 
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